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Abstract: Although intriguing results have been generated by transcriptional profiling studies,
previous works in the cardiovascular system targeted mainly the expression of messenger RNAs
(mRNAs) and microRNAs (miRNAs), which in combination account for only 1% of all transcribed
RNA species [1]. It is now known that the transcription of the eukaryotic genome is much
more pervasive and complex than previously appreciated [1]. It is estimated that up to 90% of
the mammalian genome is transcribed [1], and a large proportion of the mammalian genome is
transcribed as long noncoding RNAs (lncRNAs), a heterogeneous group of noncoding transcripts
longer than 200 nucleotides, encoded from genomic loci within or betweencoding genes [2,3].
LncRNAs have been shown to be functional and involved in specific physiological and pathological
processes, including chromatin modification [4,5], cellular responses to DNA damage [6], stem
cell pluripotency/differentiation [7], cell cycle control [8], as well as in the pathogenesis of
neurologic diseases [9,10] and human cancers [11–13]. Functionally, lncRNAs are known for
their roles as modulators of transcription, including epigenetic regulation of chromatin structure
[14]. In addition, lncRNAs have been shown to function as regulators of post-transcriptional
mechanisms, including transcript splicing [15], mRNA decay [16], and protein translation [17].
In this regard, lncRNAs are unique, functioning not dependent solely on sequence (as with miRNAs)
or structure (as for RNA-binding proteins). Instead, lncRNAs seem to function both by sequence
homology/complementarity with other nucleic acids, as well as by structure, forming scaffolds for
the assembly of macromolecular complexes that regulate biological processes [18]. The potential
value of lncRNAs as diagnostic biomarkers has been widely explored. Although lncRNAs are not as
abundant as other noncoding RNAs, the cell type- and disease-specific expression patterns make them
suitable biomarker candidates. Here, we cover a few examples of the important and well-established
lncRNAs as biomarkers for CV diseases.

Keywords: RNAs, Long noncoding RNAs, Cardiovascular diseases

1. ANRIL
Genome-wide association studies (GWAS) revealed a strong association between DNA sequence

variants on chromosome 9p21.3 and the risk of coronary artery disease, accounting for 10-15%
of disease in non-African populations [19–22]. The 9p21.3 risk locus is adjacent to the last exons
of the antisense ncRNA in the INK4 locus (ANRIL) and encompasses multiple single nucleotide
polymorphisms (SNPs). This increased CAD risk associated with the single-nucleotide polymorphisms
(SNPs) in this region is independent of all known CAD risk factors [21]. Interestingly, the risk alleles for
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atherosclerosis-related phenotypes were consistently associated with low expression levels of ANRIL
splice variant spanning exons 1–2, but not exon 17-18, of ANRIL, suggesting that different splicing
variants of ANRIL might play distinct roles [23]. Indeed, different ANRIL splice variants have distinct
expression patterns in peripheral blood mononuclear cells (PBMCs) from carriers of the risk haplotype,
which suggests that differential splicing or transcript stability may confer different atherosclerosis
susceptibility [24]. In one study enrolling 414 patients with acute myocardial infarction (AMI) treated
by primary percutaneous coronary intervention, levels of hypoxia-inducible factor 1A antisense RNA
2, KCNQ1OT1, MALAT1 and ANRIL in peripheral blood cells were significantly altered with AMI.
Among them, ANRIL and KCNQ1OT1 improved the prediction of post-MI left ventricular dysfunction
in a multivariate, prognostic regression model that includes demographic features, clinical parameters,
and cardiac biomarkers [25].

2. CoroMarker
CoroMarker, also named as Aldo-Keto Reductase Family 1 Member B1 Pseudogene 3, was

discovered in a cohort study of patients receiving diagnostic coronary angiography for suspected CAD.
CoroMarker from PBMCs was found to be a useful biomarker with high sensitivity and specificity
for the diagnosis of CAD. The expression levels of CoroMarker showed a positive correlation with
genes involved in atherosclerosis. Of note, CoroMarker was stable in plasma [26], and knockdown
of CoroMarker decreased the production of pro-inflammatory cytokines from THP-1 monocytes [27].
However, the exact mechanisms via which CoroMarker regulates monocytes or atherosclerosis remain
to be determined.

3. LIPCAR
LIPCAR (long intergenic noncoding RNA predicting cardiac remodeling), a mitochondria-derived

lncRNA, is highly expressed and consistently detectable in human plasma samples. Plasma LIPCAR
has been shown to be an independent predictor for CAD and correlates with the severity of clinical
presentation (highest in patients with AMI) [28]. In another study on patients with AMI, LIPCAR
was downregulated early after AMI but upregulated during later stages, suggesting its role in chronic
heart failure. Consistent with this observation, plasma LIPCAR level is elevated even more in
CAD patients with heart failure. In addition, LIPCAR expression level is associated with the future
maladaptive cardiac remodeling in patients who experienced an episode of AMI. Of note, LIPCAR
is independently associated with cardiovascular mortality in patients with chronic heart failure,
regardless of pathogenesis [29]. The mechanism, however, underlying the correlation between LIPCAR
and CAD/AMI remains unclear.

4. SENCR
SENCR (Smooth muscle and Endothelial cell-enriched migration/differentiation-associated long

NonCoding RNA) is highly expressed in ECs, SMCs, and aortic tissues (vascular-enriched lncRNA)
[30]. SENCR, localized mainly in the cytoplasm, stabilizes the contractile state of VSMCs by increasing
myocardin expression [30]. Moreover, it was found that SENCR contributes to endothelial commitment
in pluripotent cells and the angiogenic capacity of ECs. SENCR expression was diminished in vascular
ECs derived from superficial forearm veins of patients with critical limb ischemia and pre-mature
coronary artery disease [31]. Using FISH-Flow assay, SENCR is downregulated in circulating ECs, but
upregulated in monocytes, in early-onset CAD patients (EOCAD). Moreover, the combination of four
molecular markers (intra-circulating EC SENCR, intra-monocyte SENCR, surface/intra-circulating
EC CD146 and surface/intra-monocyte CD14) along with diabetes mellitus may serve as the early
diagnostic tool for EOCAD [32].
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LncRNA Clinical Application Physiological/pathological
impact

Mechanism involved

ANRIL [33,34] Adjacent to 9p21.3
CAD risk locus

Risk allele is associated with
altered ANRIL expression
and splicing

Regulated cell proliferation and
senescence of vascular smooth
muscle cells either by a scaffold,
guiding effector-proteins to
chromatin, or by regulating
miR-181a/Sirt1

CoroMarker
[26,27]

Diagnosis of CAD Decrease pro-inflammatory
cytokine secretion from
THP-1 monocytic cells

Unknown

LIPCAR [29] Prediction of cardiac
remodeling

Associated with future
development of cardiac
remodeling

Unknown

GAS5 [35–37] ↑ in arterial plaques
↓ in plasma of CAD
patients

Modulate macrophages and
ECs apoptosis after ox-LDL
stimulation

Unknown

SENCR [30–32] Diagnosis of early
onset CAD:
↓ in circulating ECs
↑ in monocytes

Regulation of commitment
from pluripotent cells and
angiogenic capacity of EC

Regulate myocardin gene
regulation to stabilize the
contractile state of VSMCs

DKFZP434I0714
[38]

Prediction of adverse
CV events in uremic
patients

Modulate stress-induced
EC apoptosis, endothelial
dysfunction, and vascular
inflammation

Unknown

Table 1. Comparison of baseline characteristics and treatment between Taiwan and other countries
according to income inequality

5. LncRNA GAS5
LncRNA GAS5 was significantly increased in the plaque of atherosclerosis patients compared to

healthy people [35]. However, the expression level of plasma lncRNA GAS5 was significantly lower in
patients with CAD. GAS5 decreased the level of p-mTOR without change of total mTOR in human
coronary artery endothelial cells, which is an essential initiator of the pro-inflammatory response of
monocytes/macrophages [36]. Furthermore, gain- and loss- of function studies showed that GAS5
modulates macrophages and ECs apoptosis in vitro. Interestingly, these effects of GAS5 on EC
apoptosis is mediated by macrophage-derived exomes after oxLDL stimulation, which demonstrated
the interplay of macrophage and EC during atherosclerosis development [37].

6. LncRNA DKFZP434I0714
Cardiovascular (CV) diseases are the primary cause of morbidity and mortality in patients with

end-stage renal disease (ESRD), accounting for nearly 50% of deaths in this population [39,40]. In
a cohort of patients with chronic kidney disease, end-stage renal disease (ESRD) with or without
cardiovascular (CV) event, circulating lncRNA expression profiles discriminate between ESRD
patients with and without an adverse CV event. Among the differentially expressed lncRNAs,
eight plasma lncRNAs were identified as potential predictors of adverse CV outcomes in uremic
patients, and lncRNA DKFZP434I0714 was confirmed as an independent predictor of adverse CV
outcomes in patients with ESRD. LncRNA DKFZP434I0714 is not dysregulated in failing human
heart, but it is shown to regulate endothelial function. Gain- and loss- of function studies showed
lncRNA DKFZP434I0714 modulates stress-induced EC apoptosis, endothelial dysfunction, and
vascular inflammation, which are hallmarks of vascular complications associated with uremia [38].
Table.1 summarizes the examples of lncRNAs that have been shown to be potential biomarkers for
cardiovascular diseases.
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Even though the cellular and pathological specificity of lncRNAs make them suitable biomarkers,
using lncRNAs as clinical biomarkers is potentially limited by the difficulties in their isolation and
quantification. RNA is very difficult to isolate in reasonable quantities from acellular bodily fluids such
as plasma or serum. In addition, the high cost and low throughput associated with RNA processing
and quantification also limit the application of lncRNA as a biomarker. For example, it seems unlikely
that lncRNA could replace cardiac troponins in the diagnosis of AMI, as clinical tests for cardiac
troponins are relatively cheap, fast and well-validated. Therefore, the potential usage of lncRNAs as
biomarkers is more likely to be prognostic, rather than diagnostic, in cardiovascular diseases.

7. Conclusions
Emerging evidence indicates the critical roles of lncRNAs in the complex regulatory network

of cardiovascular development and diseases. It has been well-demonstrated that many of these
lncRNAs could be utilized as novel therapeutic targets and/or biomarkers for diagnosis/prognosis
for cardiovascular diseases, including cardiac hypertrophy, myocardial infarction, heart failure, and
atherosclerosis. It will require extensive efforts, however, to refine the approaches of modulating
lncRNA expression in vivo and to improve/standardize the quantitative assays for lncRNA biomarkers
to make clinical translation possible.
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